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and convergence rates from Table 1. We show the minimum
slab temperatures at the depth of the increase of deep seismicity
in each subduction zone in Figure 3. With the possible exception
of Izu-Bonin, all deep seismicity increases occur beyond the
a - o+ vy transition within the slab, again consistent with the
hypothesis that olivine phase transformations mediate deep
seismicity. The overall pattern is one of two equally sized groups,
one at the lower left lying close to the « = a + y phase boundary
and the other farther away. The former group’s proximity to the
phase boundary suggests that in some cases seismicity increases
closely follow phase transformations. Whether these are due to
the changes in the slab stress state caused by the phase transfor-
mation or due to an unchanged stress state in a new, weaker
slab rheology is unclear. Whatever the mechanism, the idea that
olivine phase transformations somehow control deep earth-
quakes is supported by the seismicity patterns in individual sub-
duction zones. It is not, however, obvious how this occurs. [
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MOST environments are spatially subdivided, or patchy, and there
has been much interest in the relationship between the dynamics
of populations at the local and regional (metapopulation) scales’.
Here we study mathematical models for host—parasitoid inter-
actions, where in each generation specified fractions (¢n and up,
respectively) of the host and parasitoid subpopulations in each
patch move to adjacent patches; in most previous work, the move-
ment is not localized but is to any other patch”. These simple and
biologically sensible models with limited diffusive dispersal exhibit
a remarkable range of dynamic behaviour: the density of the host
and parasitoid subpopulations in a two-dimensional array of
patches may exhibit complex patterns of spiral waves or spatially
chaotic variation, they may show static ‘crystal lattice’ patterns,
or they may become extinct. This range of behaviour is obtained
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with the local dynamics being deterministically unstable, with a
constant host reproductive rate and no density dependence in the
movement patterns. The dynamics depend on the host reproductive
rate, and on the values of the parameters gy and pp. The results
are relatively insensitive to the details of the interactions; we get
essentially the same results from the mathematically-explicit
Nicholson-Bailey model of host-parasitoid interactions, and from
a very general ‘cellular automaton’ model in which only qualitative
rules are specified. We conclude that local movement in a patchy
environment can help otherwise unstable host and parasitoid popu-
lations to persist together, but that the deterministically generated
spatial patterns in population density can be exceedingly complex
(and sometimes indistinguishable from random environmental
fluctuations).

Insect parasitoids lay their eggs on, in or near the bodies of
other arthropods, and the parasitoid larvae kill the host as they
feed on it. The dynamics of systems with discrete but synchron-
ized generations of hosts and parasitoids are thus simpler than
most other prey-predator associations (see equation (1)) and
make convenient systems for study’. Theoretical and empirical
studies of predator-prey systems in general have contributed
much to the emerging consensus that spatial patchiness is impor-
tant to the understanding of regulation and persistence of many
natural populations*™''. Recent work on the dynamics of host-
parasitoid interactions in particular has also begun to provide
a unifying framework for understanding the magnitude of the
patch-to-patch variability in levels of parasitism that is required
for the population as a whole to persist'>"!*, Little attention,
however, has been given to the importance of the type of
dispersal between units of local population density (but see refs
10, 11). This work is devoted largely to this question, and to
the surprising answers that can emerge when dispersing
individuals only move locally (rather than spreading globally,
as in most previous work).

In a homogeneous environment, host-parasitoid dynamics
may be described by a pair of first-order difference equations

N,.H_—'ANJ(N,,P,) (la)
R+I=qu(1_f(N17Pr))- (lb)

Here N, and P, are, respectively, the host and parasitoid
population sizes in generation f; A is the average number of
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FIG. 1 Extinction probabilities for the specific model described in the text,
in relation to the numbers of patches in a square grid of side length (n)
and the fractions of hosts dispersing to neighbouring patches (uy) (up=
0.89, A =2, reflective boundaries). Extinction is measured as the proportion
of 20 replicates failing to persist over 2,000 generations. Each replicate is
started by setting nonzero population densities in only the third patch from
the left in the top row. The same 20 pairs of initial host and parasitoid
densities are used for all the parameter combinations. Local extinction
occurs by numeric underflow (densities less than about 107%%); however,
the resuits are robust when local extinction thresholds for both hosts and
parasitoids are modelled explicitly.
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offspring produced by an unparasitized host (assumed to be
independent of host density; stability considerations will be
more complicated when A has significant density-dependence);
f(N, P) is the fraction of hosts that escape parasitism; and q is
the average number of female parasitoids emerging from each
host parasitized. If parasitoids search randomly and indepen-
dently, then we get the classic Nicholson-Bailey model (f=
exp(—aP)), which is unstable with diverging oscillations'>. If
we suppose that the environment consists of a square grid
containing many patches, then the dynamics involves two steps.
In the first step, we apply equation (1) to the subpopulations
in each patch, to find how many hosts and parasitoids will
emerge in that patch in the next generation (the ‘escape function’
f in any one patch may be of simple Nicholson-Bailey form,
corresponding to random search within patches, or it may be
more complex). In the second step, we allow for dispersal,
distributing some fixed fraction (uy) of the hosts and (up) of
the parasitoids in each patch among other patches, according
to some specified rules. In most previous studies, the dispersing
individuals are distributed according to some particular statis-
tical distribution (often a negative binomial) over all other
patches. In these cases, overall population densities will tend
to be stable provided the coefficient of variation squared of the
density of searching parasitoids in the vicinity of each host
exceeds approximately unity (the ‘CV?>1 rule’)'*'*. This

FIG. 2 Photograpbs illustrating the different pat-
terns of spatial dynamics obtained from the
specific model (a-¢) and the cellular automaton
model (d) discussed in the text. Each photograph
is a snapshot in time with the colour coding
representing different relative abundances of
hosts and parasitoids within a patch. & Typical
‘spiral waves' obtained in the spiral region of
Fig. 3. b, The ‘crystal lattice’ pattern obtained
for up—> 1 and small u, (top left of Fig. 3). This
pattern settles to a completely static mosaic of
high density and low density patches; there is
variation within the high and low density
categories, although this variation does not show
up with our colour-coding. ¢, Spatially erratic
(‘chaotic’) patterns obtained in the chaos region
of Fig. 3. d A typical spatial pattern generated
from the cellular automaton in which the move-
ment rules correspond qualitatively to the
specific model. The automaton has nine states,
labelled A to I, movement to the next state in
cyclic order is automatic, except that state A
(empty) moves to state B only in the presence
of at least one neighbouring B (modelling host
colonization), and state D moves to state E only
in the presence of an F neighbour (modelling
parasitoid colonization). Only the four orthogonal
nearest neighbour cells are used. Variant
automata (exhibiting spirals, crystals and other
behaviour) are generated by using eight nearest
neighbours, and by changing the required neigh-
bours for A-BtoCorDandfor D=>E toD,F,
G or H. These changes affect the velocities of
the colonization wavefronts of hosts and para-
sitoids, and are analogous to changes in uy and
up in the specific model.
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approximate criterion only depends on the degree of
heterogeneity in the risk of parasitism between individual
hosts'®; thus spatial patterns of parasitism that are directly or
inversely related to host abundance per patch, or that show no
such covariance, can all contribute to population persistence in
the same way'*. When we look at the two-dimensional spatial
array of densities of host and parasitoid subpopulations gener-
ated by such ‘global movement’ models, we simply see the
spatially stochastic pattern corresponding to the underlying
statistical distribution used to describe the dispersal process.

Suppose, however, rather than the dispersing individuals from
each patch entering a ‘pool’ for global dispersal, they diffuse
outwards, in this case by equal distribution among the eight
nearest neighbours of that patch in the square array. To lay bare
this effect alone, moreover, let us suppose parasitism is random
in each patch (f=exp (—aP) in equation (1)). For specified
values of the parameters A, un and wp (the parameters g and
a are principally scaling factors and otherwise do not affect the
dynamics), we now have a purely deterministic model for the
spatial and temporal dynamics of this host-parasitoid associ-
ation. We have conducted extensive numerical and analytical
studies of this system in which the size of the nxn array of
patches is varied. The results are as follows.

If the number of patches is too small, then the underlying
instability of the simple Nicholson-Bailey model in each patch
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eventually drives the entire system to extinction; there are diverg-
ing oscillations in local densities, and first host and then para-
sitoid populations are extinguished. What is meant by ‘too small’
an array depends on the fraction of hosts and parasitoids that
leave their home patch each generation (un and up, respec-
tively), and on the host’s intrinsic growth rate, A. Figure 1
illustrates this, showing the proportion of simulations that result
in extinction as a function of uy and of the side-length, n, of
the array of patches. For instance, with uy = 0.1 all the arrays
of 6 x6 or smaller result in extinction, all of 15x 15 or greater
persist, whereas for intermediate-sized arrays there is an element
of chance (with some initial configurations leading to persistence
and others to extinction, sometimes after quite long times).
Higher degrees of host movement (higher u ) make persistence
less easy and, as ever, persistence is also more difficult for very
large A. These results are all fairly insensitive to whether one
assumes periodic, reflexive, or absorbing boundary conditions
on the array (the details of boundary conditions will be described
elsewhere (H.N.C, M.P.H. and R.M.M., manuscript in prepar-
ation)).

The persisting deterministic systems settle to one of three
broadly-distinguishable patterns.

The first shows patterns of spiral waves. Figure 2a shows a
snapshot in time of such a pattern (assuming reflection at the
boundaries). Over time, the waves spiral outwards, collide, and
perform all manner of manoeuvres, but all the time retaining
their overall wavelength and the spiral pattern. Previous studies
of the spatial dynamics of prey-predator interactions in con-
tinuous time (as distinct from our discrete-time interactions with
difference equations) have employed nonlinear ‘reaction-
diffusion’ differential equations, and have found stable wave
patterns (see, for example, ref. 9 for a study of goldenrod aphids
and ladybug beetles, and ref. 17 for a more general review). The
complex spiral waves in Fig. 2a are, however, new in this context.

The second pattern, attained for a relatively restricted range
of values of up near 1 and small uy, gives a completely static
‘crystal lattice’, as illustrated in Fig. 2b. Analytical results support

‘Crystal lattice’ Chaos

0.6

Spirals

0.4

0.2
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My

FIG. 3 Diagram showing the dependence of the type of persistent spatial
pattern observed on u, and up, for n=30 and A =2, The boundaries are
obtained by simulation, and are approximate (and partly subjective). The
shaded area represents parameter combinations for which the persistent
spatial pattern is unlikely to be established by starting the simulation with
a single non-empty patch (as described in Fig. 1 caption). Spirais may be
established in these cases by starting with a lower u, and increasing it
after 100 to 200 generations. Non-persistence occurs for some combina-
tions with very small u, or up; this area is imperceptible in the figure.
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the finding that these ‘crystal lattice’ patterns need not be neatly
periodic in space; they can be deformed, spatially irregular
lattices, while retaining their essential property of being tem-
porally static (the static ‘crystal lattices’ are, moreover, only
possible if A is small enough—specifically, A <e=2.7).

The third pattern, illustrated by Fig. 2¢, is one of spatial chaos,
with the spatially erratic pattern changing from generation to
generation in an apparently unpredictable way. The underlying
equations, however, are rigidly deterministic, with no random
or unpredictable elements whatsoever (in contrast to the spatial
patterns of the ‘global dispersal’ models'®!'”, in which the distri-
bution of the dispersing individuals among patches is stochastic,
described by some statistical distribution). Figure 2c¢ is an
example of spatial chaos, generated by a simple and biologically
motivated model that is wholly deterministic; the temporal
sequence of successive patterns is even more striking.

Figure 3 indicates roughly which of the three characteristic
patterns we may expect to see for particular values of uy and
Mup, assuming a 30 X 30 array of patches. This figure is necessarily
impressionistic because the ‘crystal lattice’ pattern of Fig. 2a
gradually shades into the spatial chaos of Fig. 2¢, which in turn
gradually shades into the spiral wave pattern of Fig. 2b as uy
increases and wp decreases. Finally, no matter how large the
two-dimensional array of patches, the system goes extinct if
un=>0o0r up—=>0.

Turning back to the overall population dynamics, these results
for models with local movement may be related to the previously
discussed results based on global dispersal. Obviously, the
results support the general point that patchiness, coupled with
local movement among patches, can stabilize host-parasitoid
associations (note that the underlying interaction in any one
patch is by itself highly oscillatorily unstable). A. M. De Roos,
E. McCauley and W. G. Wilson have independently made this
point in an analysis of the overall dynamics of host-parasitoid
systems similar to those studied here (personal communication).
In more detail, we find that the rough stability rule mentioned
above, CV?>1, is supported in a qualified way by the models
in our study: the associations which persist by virtue of spatial
chaos or spirals (and which have roughly steady overall popula-
tion values) consistently have CV? slightly greater than one. On
the other hand, static crystal lattices have CV?« 1.

How robust are these resuits? To what extent do the patterns
in Fig. 2, and their parameter-dependence in Fig. 3, depend on
the detailed assumption of Nicholson-Bailey dynamics (with
random search) within each patch? We could attempt to answer
these questions by exploring other specific forms of the function
S{N, P) in equation (1). This is the procedure that has usually
been adopted in past studies of this general kind>. Instead, we
adopt the more novel approach of using a cellular automaton
to explore the robustness of our conclusions about the popula-
tion dynamics®®?% In the work described above, we used an
explicit equation for the dynamics in each patch and explicit
formulae describing movement to neighbouring patches. To
display the results, the two-dimensional arrays of population
densities were colour-coded in Fig. 2 by assigning nine colours
to characterize nine categories of patches defined by dividing
each population density into three classes (‘very low, medium,
high’). For a cellular automaton approach, we abandon detailed
host and parasitoid population values, and acknowledge only
these nine qualitative categories of patch densities. We then
define a set of ‘movement rules’ that specify the colour of each
patch next generation in relation to its present colour and the
colour of its eight neighbours. These rules are qualitative
embodiments of the workings of dynamics within a patch and
subsequent dispersal patterns.

Thus defined, our cellular automata give results qualitatively
very similar to those of the detailed models. Arrays that are too
small lead to extinction. Large enough arrays can give crystal
lattices, or spiral waves, or spatial chaos (in which deterministic
rules, with no random elements, give apparently random spatial
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patterns). Figure 2d is a representative example, being the
cellular automaton analogue of Fig. 2a with spiral waves moving
as ‘fronts’ across the patchy environment.

In a homogeneous environment, host-parasitoid associations
with discrete generations will not persist unless the parasitoids
search nonrandomly, or unless host or parasitoid populations
exhibit some form of inherent density-dependent effects. In a
subdivided environment, such associations can persist without
any explicit density-dependences, and with parasitoids search-
ing randomly within patches, provided the hosts in each gener-
ation are sufficiently aggregated in their distribution among
patches and there is sufficient variability in the density of search-
ing parasitoids in the vicinity of individual hosts. We have
extended these results to show that purely deterministic proces-
ses, whereby some constant fractions of hosts and parasitoids
(un and pp, respectively) move to immediately neighbouring
patches in each generation, can also lead to overall persistence,
even when parasitoids search randomly within patches and no
explicit density-dependent mechanisms are present. The
densities of host and parasitoid subpopulations in a two-
dimensional (n x n) array of patches can exhibit spiral waves,
or spatial chaos (with deterministic rules generating patterns
that are apparently random in time and space), or static-looking
‘crystal lattice’ patterns, depending on the magnitude of the
parameters, uy and u,, and provided n is big enough. Note
that these complex patterns of spatial variation in population
density arise even though the environment in our different
patches is the same; the patterning is thus intrinsically generated
by the interplay of local dispersal and local dynamics. These
results seem robust, being true both for conventional mathemati-

cal models based on Nicholson-Bailey or similar equations, and
for cellular automata based on qualitative rules. We emphasize
that these complex patterns in the densities of host and para-
sitoid subpopulations in individual patches (as shown in Fig.
2¢) are produced by strictly deterministic rules or equations. In
practice, such spatially chaotic patterns may be hard to distin-
guish from those produced by randomly varying environmental
factors. O
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A selective deficit for writing
vowels in acquired dysgraphia
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BRAIN-DAMAGED patients with acquired writing disorders pro-
vide important information about the normal processes of spelling
and writing"%. Current models indicate that to produce a letter
string, its ‘abstract’ representation is computed and stored in a
temporary orthographic buffer, from which it is converted to a
verbal code (if the word is to be spelled aloud) or to a physical
letter code (if the word is to be written). The stored graphemic
representations specify the identity and order of the component
letters® and their consonant/vowel status®. Here 1 describe the
spelling performance of two patients with a selective deficit in
writing vowels. When writing words, the first patient omitted all
vowels, leaving a blank space between consonants or consonant
clusters, whereas the second produced errors that almost exclus-
ively involved vowels. This pattern of performance supports the
hypothesis that the consonant/vowel status of graphemes is
differentially specified in the spelling process and may be selec-
tively affected after brain damage.

C.F. is a 43-year-old right-handed engineer with eight years
of schooling. On 21 September 1990 he suffered an ischaemic
infarction which involved the parietal lobe of the left cerebral
hemisphere. On the first neuropsychological examination, two
weeks after the stroke, he was totally speechless but could
communicate by gestures. Auditory verbal comprehension was
clinically normal. He wrote with the left hand because of a
severe right hemiplaegia. When asked to write his name and the
names of his town and of five objects, he omitted all vowels
(Fig. 1), leaving a blank space between correctly written con-
sonants. Consonant clusters were preserved and no space was
left between letters. C.F. was aware of errors, but did not seem
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to be able to choose the correct letters. The deficit was transient.
In the following days, the patient began to improve and a week
later he showed a mild Broca’s aphasia with articulatory difficul-
ties and some anomic pauses. Writing performance was almost
normal with only sporadic letter substitutions. Patients who
leave blank spaces for unavailable letters are not uncommon’*®,
but a specific vowel impairment is completely novel.

C.W. is a 62-year-old right-handed man. He is a retired
typographer with eight years of schooling. On 31 August 1990,
he suffered an ischaemic infarction in the left frontal subcortical
region. He had neither motor nor sensory deficits. C.W. showed
a form of transcortical motor aphasia with some difficulties in
initiating speech but relatively good auditory-verbal compre-
hension. Spontaneous speech was severely reduced with per-
severation and occasional phonemic and verbal paraphasias,
but no articulatory disorders. C.W. showed a specific deficit in
writing (Table 1).

His spelling abilities were widely investigated (Table 2). He
showed the same level of performance and the same kind of
errors independently of input (oral dictation, delayed copying)
or output (written spelling, oral spelling, typing) modalities.
Writing was not affected by lexical factors (grammatical class,
word frequency or abstract quality) or lexicality (words versus
non-words). Only stimulus length influenced his performance,
with short stimuli being spelled better than longer ones. The
number of letters and not the number of syllables seemed to be
the critical factor. C.W. made significantly fewer errors in writing
capital letters than cursive. This is probably because with capital
letters the patient was slower and made more corrections. In
any case, the pattern of errors was not different in the two
conditions. Direct copying and writing to dictation of single
letters and syllables were flawless. C.W. wrote with his
(dominant) right hand.

In the entire corpus of responses, 409 letters were produced
incorrectly. The most frequent error type was letter substitution
(n=340 (83%); for example, dietro (behind)- diatro). Other
errors were transpositions (n =30 (7%); for example, caro
(dear) - cora), deletions (n=26 (6%); for example, premio
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